ISSN PRINT 2710-4079 ISSN ONLINE 2710-4087

# PALYNOLOGICAL CHARACTERIZATION OF FLORA OF LAHORE UNIVERSITY OF MANAGEMENT SCIENCES, LAHORE

TAYYABA SHAHZADI<sup>1</sup>, MOBEEN IQBAL<sup>1</sup>, SANA SARFRAZ<sup>1</sup>, ANDLEEB ISTIKHAR<sup>1</sup>, ANDLEEB ANWAR SARDAR<sup>1</sup> AND ANJUM PERVEEN<sup>2</sup>

<sup>1</sup>Department of Botany, GC University Lahore <sup>2</sup>Centre for Plant Conservation, University of Karachi

Received on: 23-10-23; Reviewed on: 24-04-23; Accepted on: 20-05-2024; Published on: 20-06-2024

#### **Abstract**

The present study reveals palynomorphic characterization of flora of Lahore University of Management Sciences, Lahore. In this respect, 67 plant species belonging to 40 different families including 56 dicots, 10 monocots and 1 gymnosperm have been studied by using light microscopy. The pollen features studied includes structure, volume, aperture, polar length, equatorial diameter, P/E ratio, pollen shape, pollen size, pollen aperture and tectum. The present study demonstrates that the pollen morphology of both herbaceous and woody vegetation exhibits a huge diversity of pollen characters. Pollen shape was mostly prolate spheroidal but oblate spheroidal, prolate, sub prolate, spheroidal and tricolpate were also observed in some species. Pollen aperture varied from porate to colpate and some species were inaperturate. Pollen tectum has been found reticulate in most species, while psilate, scabrate, verrucate, echinate and striate were also observed. Furthermore, the family name and common name have also been studied. Maximum pollen size is 176.92 µm found in Pinus caraniensis (pinaceae) and minimum pollen size is 88.87µm observed in Morus alba (Moraceae). This work is anticipated to be advantageous in documentation for taxonomic recognition of the plants of Lahore University of Management Sciences, Lahore.

**Keyword:** Herbaceous and woody flora, Palynological evaluation, Vegetation exhibits, Taxonomic recognition and Palynomorphic characters.

# INTRODUCTION

Palynology is the science of pollen based on the observation of palynomorphs that covers all aspects of pollen and spore. The term palynology was introduced by Hyde and Williams in 1944, derived from Greek word palynein which means to scatter, and is similar to Latin pollen where palyno is meaning 'to sprinkle' and pale meaning "flour" or 'dust' (Halbritter *et al.*, 2018). Pollen morphology is extremely important because it is utilized to identify and understand relationships between species at various taxonomic levels (Khan *et al.*, 2018). The Palynomorphic data provides an important proof for the separation of

identification of taxa at different levels (Abdulrehman *et al.* 2019).

The study of palynomorphs can help us to understand energy state, life, and habitat in which they are produced. Pollen is the source of male gamete transfer. Unicellular pollen grain is represented by microscopic seed plants, whereas multicellular pollen is represented by male gametophytic generation (Gomez *et al.*, 2015). Surface patterns like grooves, spores, spines, and reticulation across exine give a means of distinguishing pollen grains as well as a useful trait to employ in taxonomic investigations (Blackmore and Ferguson, 1986). In gymnosperms and angiosperms, pollen grain is referred as male gametophyte

that produces male gametes. Pollen in each species has distinct morphological characters, helping analysts in classifying pollen. Pollen wall contains two layers i.e., outer and inner. The outer layer is referred as exine that is made up of an unusual substance called sporopollenin. The inner layer is called as intine that is composed of cellulose. This layer is similar to plant cell wall (Frenguelli, 2003).

There are three main characters to identify any pollen i.e., 1- aperture, type and number, 2- Shape and size, 3- Sculpture of exine. The thin or missing parts in exine from where pollen tube emerges are called apertures. Pollen have 3-D structure. They are spherical or ovoidal mostly and have other shapes also. Ratio between polar axis length and equatorial diameter is also used to define pollen. Tectum may be complete, partially dissolved or absent. Sculptural elementary be hemispherical, tiny flakes or granular (Frenguelli, 2003).

Pollen characters include exine sculpture, ornamentation pattern and exine infrastructure. All these characters along with other morphological and molecular features are helpful in systematical studies (Van der Ham, 2010). Surface patterns like grooves, spores, spines, and reticulation across exine give a means of distinguishing pollen grains as well as a useful trait to employ in taxonomic investigations (Blackmore and Ferguson, 1986). Surface patterns like grooves, spores, spines, and reticulation across exine give a means of distinguishing pollen grains as well as a useful trait to employ in taxonomic investigations (Blackmore & Ferguson, 1986).

According to Erdtman (1963), there are two types of palynology: fundamental and applied. The fundamental palynology which studies pollen and spore morphology in both living and fossils while applied palynology deals with Geopalynology,

Palynotaxonomy,

Pharmacopalynology,

Mellitaxonomy,

Archaeopalynology,

Mellitopalynology,

Atriopalynology, and Forensic palynology.

Plant breeding, agriculture, horticulture, and plant physiology all use palynological studies.

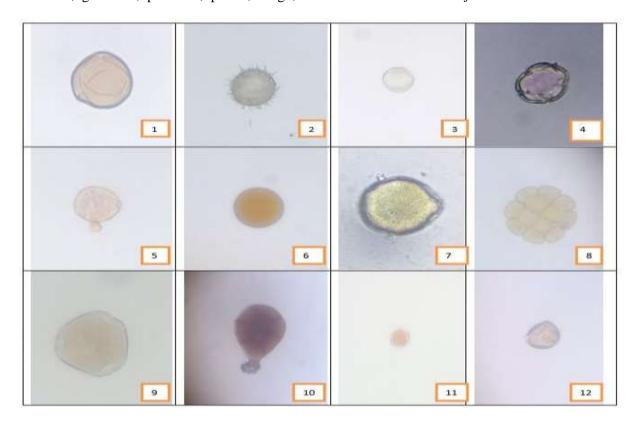
Herbaceous plants have no woody stems above ground and are vascular plants (Clapham et al., 1994). Graminoids fobs and ferns are examples of herbaceous plants (Bebarta, 2012). Graminoids are plants having grass-like appearance which include true grasses, rushes and sedges, whereas herbaceous broad leaved plants are called as fobs (Chapman and Bolen, 2015). Herbaceous plants are typically low-growing plants that differ from woody plants like trees and having soft green stems that are not lignified. Herbaceous plant development above ground is ephemeral and often seasonal in nature. Various herbaceous plant families have investigated by various researchers (Zafar et al., 2007; Meo and Khan, 2006; Mbagwu et al., 2008; Willis, 1973; Mabberley, 1997). Lahore University of management sciences (LUMS), Lahore, is one of the best research universities in Pakistan. It was established by a renowned businessman, Syed Babar Ali in 1984. It covers an area of 100 acres (40 ha) between 31°28'12" N and 74°24'40" E. It is originally located in Khyaban e Jinnah, opposite Sector U5, D.H.A.

phase 5, Lahore and Punjab. The average rainfall is 575mm. The vast area of university is covered with vegetation that gives it an attractive look as well as moderate climate. LUMS, Lahore is a historical institution and have great diversity of woody plant species. However, no research work has been done on woody plants of campus.

#### MATERIALS AND METHODS

The regular field trips of the study area were conducted for the documentation of plants and collection of flowers during the months of December 2021 and June 2022. The anther containing pollen of these plants were removed from the flower with the help of scissors and collected in glass viols containing glacial acetic acid. After collection, pollen were prepared for microscopic studies by using the standard Acetolysis procedure of Erdtman (1952) and Saxena (1993).

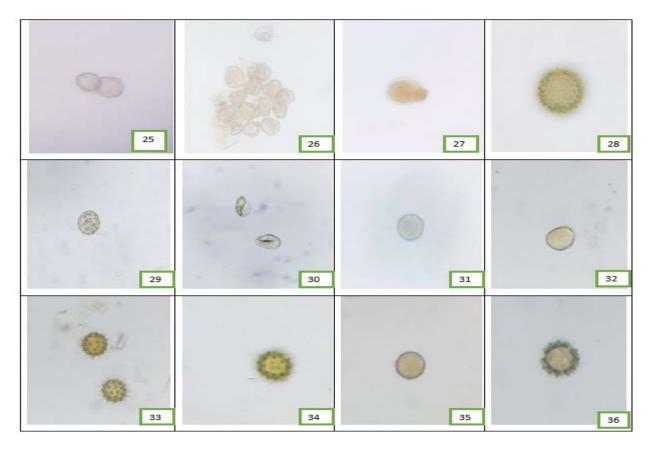
After Acetolysis, the prepared samples were subjected to microscopy using light microscope. The slide was examined under light microscope (S/N – EU 1850218) at 10X, 40X, and 60X. The measurements of the pollen were based on 3-4 pollen per specimen. Pollen shape that includes polar axis or length (P) and equatorial axis or diameter (E) was computed. The terms in the present study were used according to Wodehouse (1928), Erdtman (1952), Faegri and Iverson (1964) and walker and Doyle (1976).


# **RESULTS**

The present study showed huge variations in palynomorphic characterization of

67 plant species belonging to 40 different families including 56 dicots, 10 monocots and 1 gymnosperm. The families included are: Alliaceae, Amaranthaceae, Amaryllidaceae, Anacardiaceae, Apocynaceae, Asparagaceae, Asteraceae, Brassicaceae, Caryophyllaceae, Clusiaceae, Commelinaceae, Convolvulaceae, Ebenaceae, Euphorbiaceae, Fabaceae, Hemerocallidaceae, Lamiaceae, Lecythidaceae, Liliaceae, Lythraceae, Myrtaceae, Moraceae, Moringaceae, Malvaceae, Meliaceae, Nyctaginaceae, Oleaceae, Oxalidaceae, Pinaceae, Plumbaginaceae, Poaceae, Polminaceae. Primulaceae, Putranjivaceae, Rutaceae, Rubiaceae, Scrophulariaceaea, Solanaceae, Tropaeolaceae and Verbenaceae as shown in Table no. 1. The analysis has been made by using light microscope. In this study, pollen shape, aperture, tectum, size, and unit are features of consideration. Minimum size of pollen is 88.87 µm. The shape of pollen includes prolate spheroidal, oblate spheroidal, prolate, sub prolate and spheroidal. The pollen of most species shows prolate spheroidal shape that is observed in 32 species.

Colpate, colpoporate, dicolpate, hexacolpate, microechinate, monocolpate, monoporate, pantocolpate, pantoporate, syncolpate, tetraporate, Tricolporate, trizonocolpate, tricolpate, tetracolporate and triporate are obtained as pollen aperture. Inaperturate pollen are also observed in some species. Equatorial diameter varies from 4.92 ±  $0.60\mu m$  to  $19.94 \pm 0.13 \mu m$ , polar length varies from  $4.92 \pm 0.60 \mu m$  to  $20.31 \pm 0.63 \mu m$  and P/E ratio varies from 88.87 to 176.92. The tectum variations are psilate, echinate, rugulate, reticulate, scabrate, aerolate, echinolophate, fossulate, granulate, perforate, porate, rough,


smooth, verrucate and striate. Mostly, pollen are free as monad but polyad are also observed in *A. lebbeck and A. julibrissin*.



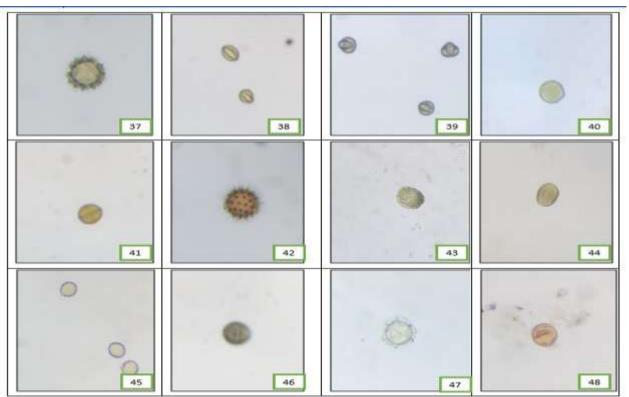

**Plate 1:** 1. Pulmeria obtusa 2. Nerium oleander 3. Tabernaemontana divaricata 4. Dracomontana dao 5. Diospyros malabarica 6. Jatropha integerrima 7. Bauhinia variegata 8. Albizia lebbeck 9. Cassia fistula 10. Albizia julibrissin 11. Petersianthus quadrialatus 12. Barringtonia asiatica



Plate 2: 13. Punica granatum 14. Callistemon viminalis 15. Syzygium cumini 16. Morus alba 17. Moringa oleifera 18. Brachychiton acerifolius 19. Azadirachta indica 20. Bougainvillea spectabilis 21. Jasminum humile 22. Pinus canariensis 23. Putranjiva roxburghii 24. Citrus japonica



**Plate 3:** 25. Ixora finlaysoniana 26. Rondeletia odorata 27. Lantana camara 28. Alcea rosea. 29. Amaranthus viridis, 30: Asparagus densiflorus, 31: Catharanthus roseus, 32: Chlorophytum comosum, 33: Cosmos caudatus 34. Dahlia pinnata, 35. Dianthus barbatus, 36: Dimorphotheca fruticosa,



**Plate No. 4:** 37. Eclipta prostrata, 38: Euphorbia hirta, 39: Euphorbia milii 40:Evolvulus nummularius, 41:Gerbera jamesonii, 42: Helianthus annuus, 43:Hemerocallis lilioasphodelus, 44: Hippeastrum reginae, 45. Hypericum hircinum 46: Jasminum sambac, 47: Launaea nudicaulis, 48: Lepidium didymum

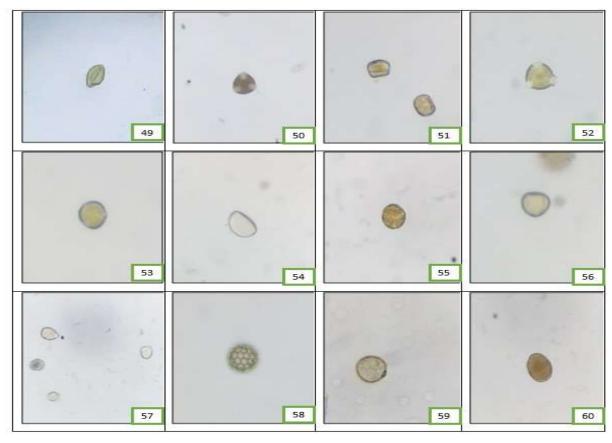
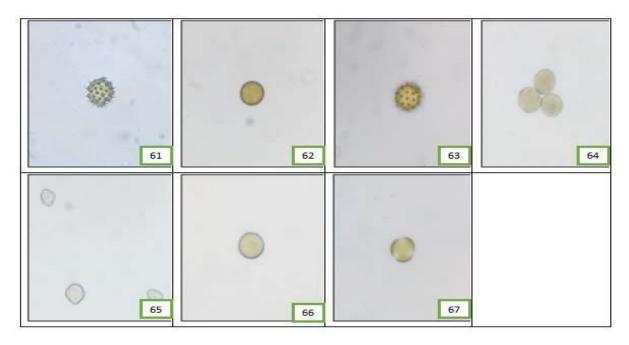




Plate No. 5: 49: Lilium bulbiferum, 50: Limonium sinuatum, 51: Lysimachia maritime 52: Mazus pumilus, 53:Mercurialis annua, 54:Nothoscordum bivalve, 55:Oxalis corniculata, 56:Oxalis latifolia, 57: Petunia hybrid 58:Phlox drummondii, 59:Poa annua, 60:Salvia splendens,



**Plate No. 6:** 61: Sphagneticola trilobata, 62: Stellaria media, 63: Tagetes erecta 64: Tradescantia pallida, 65: Tropaeolum majus, 66: Verbena bonariensis, 67: Youngia japonica

# SHAHZADI ET AL., 2024

Table 1. General Pollen Characters of Flora of Lahore University of Management Sciences, Lahore

| Sr.<br>No. | Scientific Name                             | Common Name                     | Family Name    | Polar length<br>(P) in µm | Equatorial<br>length (E) in<br>µm | P/E<br>ratio | Pollen shape           | Pollen size Aperture pattern and Symmetry Tectum | Tectum     |
|------------|---------------------------------------------|---------------------------------|----------------|---------------------------|-----------------------------------|--------------|------------------------|--------------------------------------------------|------------|
| 1          | Nothoscordum<br>bivalve (L.) Britton        | Crow-poison,<br>False garlic    | Alliaceae      | 7.24±0.81                 | 7.56±0.97                         | 95.77        | Oblate-<br>spheroidal  | Monocolpate, bilaterally symmetrical             | Granulate  |
| 2          | Amaranthus viridis<br>L.                    | Slender amaranth                | Amaranthaceae  | 4.92±0.60                 | 4.92±0.60                         | 100          | Prolate-<br>spheroidal | Pantoporate,radially symmetrical                 | Granulate  |
| 3          | Hippeastrum<br>reginae Herb.                | Amaryllis,<br>Christmas rose    | Amaryllidaceae | 17.2±2.54                 | 18.28±3.02                        | 94.09        | Oblate-<br>spheroidal  | Monoporate, radially symmetrical                 | Reticulate |
| 4          | Dracontomelondao<br>(Blanco)                | Argus pheasant                  | Anacardiaceae  | 14.15±0.82                | 14.35±0.80                        | 98.61        | Oblate<br>spheroidal   | Pentoporate                                      | Rough      |
| 5          | Plumeria obtusa L.                          | Gul-e-cheen                     | Apocynaceae    | 75.25±0.25                | 75.31±0.35                        | 99.93        | Oblate<br>spheroidal   | Colpate                                          | Smooth     |
| 6          | Nerium oleander<br>L.                       | Kaner                           | Apocynaceae    | 28.33±1.66                | 29.16±1.44                        | 97.15        | Oblate<br>spheroidal   | Tetraporate, porate, porus                       | Echinate   |
| 7          | Tabernaemontana<br>divaricata (L.)          | Crape jasmine                   | Apocynaceae    | 27.15±2.78                | 26.45±2.77                        | 102.64       | Prolate<br>spheroidal  | Colpoporate                                      | Smooth     |
| 8          | Catharanthus<br>roseus (L.) G.Don           | Bright eyes, Old<br>maid        | Apocynaceae    | 12.04±0.41                | 12.04±0.41                        | 100          | Prolate-<br>spheroidal | Tricolporate, radially symmetrical               | Psilate    |
| 9          | Asparagus<br>densiflorus<br>(Kunth) Jessop  | Asparagus-fern,<br>Foxtail fern | Asparagaceae   | 5.00±0.56                 | 5.08±0.56                         | 98.43        | Oblate-<br>spheroidal  | Dicolpate,bilaterally symmetrical                | Rugulate   |
| 10         | Chlorophytum<br>comosum (Thunb.)<br>Jacques | Spider<br>Plant                 | Asparagaceae   | 7.36±0.36                 | 7.64±0.82                         | 96.34        | Oblate-<br>spheroidal  | Tricolporate, bilaterally symmetrical            | Smooth     |
| 11         | Cosmos caudatus<br>Kunth                    | Cosmos, Cut-leaf                | Asteraceae     | 5.68±0.88                 | 5.68±0.88                         | 100          | Prolate-<br>spheroidal | Tricolporate, radially symmetrical               | Echinate   |
| 12         | Dahlia pinnata<br>Cav.                      | Garden Dahlia                   | Asteraceae     | 7.2±0.30                  | 7.2±0.30                          | 100          | Prolate-<br>spheroidal | Tricolporate, radially symmetrical               | Echinate   |

# SHAHZADI ET AL., 2024

| 13 | Dimorphotheca<br>fruticosa (L.) DC.       | White daisy bush                         | Asteraceae      | 5.08±0.35 | 5.08±0.35 | 100    | Prolate-<br>spheroidal | Tricolporate, radially symmetrical | Echinate      |
|----|-------------------------------------------|------------------------------------------|-----------------|-----------|-----------|--------|------------------------|------------------------------------|---------------|
| 14 | Eclipta prostrata<br>(L.) L.              | White twinheads,<br>False daisy          | Asteraceae      | 4.68±0.13 | 4.6±0.18  | 101.74 | Prolate-<br>spheroidal | Tricolporate, radially symmetrical | Echinate      |
| 15 | Gerbera jamesonii<br>Bolus                | Barberton daisy,<br>Gerbera daisy        | Asteraceae      | 8.24±0.69 | 8.24±0.69 | 100    | Prolate-<br>spheroidal | Dicolpate, radially symmetrical    | Psilate       |
| 16 | Helianthus annuus<br>L.                   | Sunflower                                | Asteraceae      | 6.12±0.36 | 6.12±0.36 | 100    | Prolate-<br>spheroidal | Tricolporate, radially symmetrical | Echinate      |
| 17 | Launaea<br>nudicaulis (L.)<br>Hook.f.     | Naked launaea,<br>Bold-leaf launaea      | Asteraceae      | 6.96±0.22 | 6.96±0.40 | 100    | Prolate-<br>spheroidal | Tricolporate, radially symmetrical | Echinate      |
| 18 | Sphagneticola<br>trilobata (L.)<br>Pruski | Yellow creeping daisy                    | Asteraceae      | 5.28±0.50 | 5.28±0.50 | 100    | Prolate-<br>spheroidal | Tricolporate, radially symmetrical | Echinate      |
| 19 | Tagetes erecta L.                         | African marigold,<br>Mexican<br>marigold | Asteraceae      | 9.44±0.29 | 9.44±0.29 | 100    | Prolate-<br>spheroidal | Pantoporate, radially symmetrical  | Echinate      |
| 20 | Youngia japonica<br>(L.) DC.              | Oriental false hawksbeard                | Asteraceae      | 5.68±1.10 | 5.8±1.12  | 97.93  | Oblate-<br>spheroidal  | Tricolporate, radially symmetrical | Echinolophate |
| 21 | Lepidium didymum<br>L.                    | Lesser swine-<br>cress                   | Brassicaceae    | 5.16±0.60 | 5.08±0.62 | 101.57 | Prolate-<br>spheroidal | Tricolpate, radially symmetrical   | Reticulate    |
| 22 | Dianthus barbatus<br>L.                   | Sweet William                            | Caryophyllaceae | 8.52±1.10 | 8.52±1.10 | 100    | Prolate-<br>spheroidal | Pantoporate, radially symmetrical  | Scabrate      |
| 23 | Stellaria media<br>(L.) Vill.             | Common<br>chickweed                      | Caryophyllaceae | 6.6±0.81  | 6.6±0.81  | 100    | Prolate-<br>spheroidal | Pantoporate, radially symmetrical  | Verucate      |
| 24 | Hypericum<br>hircinum L.                  | Stinking tutsan                          | Clusiaceae      | 5.08±0.60 | 5.12±0.54 | 99.22  | Oblate-<br>spheroidal  | Tricolporate, radially symmetrical | Reticulate    |

| 25 | Tradescantia<br>pallida (Rose)<br>D.R.Hunt | Purple Heart,<br>Purple queen       | Commelinaceae     | 8.84±0.47  | 8.84±0.47  | 100    | Prolate-<br>spheroidal | Tetraporate, radially symmetrical     | Rugulate                     |
|----|--------------------------------------------|-------------------------------------|-------------------|------------|------------|--------|------------------------|---------------------------------------|------------------------------|
| 26 | Evolvulus<br>nummularius (L.)<br>L.        | Roundleaf<br>Bindweed,              | Convolvulaceae    | 7.2±0.33   | 7.28±0.33  | 98.90  | Oblate-<br>spheroidal  | Pantocolpate, radially symmetrical    | Granulate                    |
| 27 | Diospyros<br>malabarica (Desr.)            | Gaub                                | Ebenaceae         | 35.41±1.88 | 34.58±3.32 | 102    | Prolate<br>spheroidal  |                                       |                              |
| 28 | Jatropha<br>integerrima Jack.              | Peregrina                           | Euphorbiaceae     | 66.56±1.19 | 66.5±1.22  | 100.09 | Prolate<br>spheroidal  | Inaperturate, porate                  | Verucate                     |
| 29 | Euphorbia hirta L.                         | Asthma-plant,<br>Hairy Spurge       | Euphorbiaceae     | 3.64±0.69  | 3.88±0.69  | 93.81  | Oblate-<br>spheroidal  | Tricolporate, radially symmetrical    | Reticulate                   |
| 30 | Euphorbia milii<br>Des Moul.               | Crown-of-thorns,<br>Christ<br>Thorn | Euphorbiaceae     | 8.08±0.70  | 8.12±0.77  | 99.51  | Oblate-<br>spheroidal  | Tricolporate, radially<br>symmetrical | Psilate                      |
| 31 | Mercurialis annua<br>L.                    | Annual mercury                      | Euphorbiaceae     | 4.72±0.25  | 4.76±0.28  | 99.16  | Oblate-<br>spheroidal  | Tricolporate, radially symmetrical    | Reticulate                   |
| 32 | Bauhinia variegate<br>L.                   | Kachnar                             | Fabaceae          | 63.33±1.44 | 64.16±1.44 | 98.71  | Oblate<br>spheroidal   | Tricolpate, colpate                   |                              |
| 33 | Albizia lebbeck<br>(L.)                    | Siris                               | Fabaceae          | 24.08±0.14 | 24±0       | 100.33 | No shape<br>name       | Inaperturate                          | Perforate, psilate fossulate |
| 34 | Cassia fistula L.                          | Golden shower                       | Fabaceae          | 33.27±0.66 | 34±1.22    | 97.85  | Oblate<br>spheroidal   | Tricolporate                          | Psilate                      |
| 35 | Albizia julibrissin<br>Durazz.             | Mimosa                              | Fabaceae          | 21.66±5.20 | 21.66±5.20 | 100    | No shape<br>name       | Inaperturate                          | Psilate                      |
| 36 | Hemerocallis<br>lilioasphodelus L.         | Yellow daylily,<br>Lemon lily       | Hemerocallidaceae | 7.52±0.56  | 7.56±0.56  | 99.47  | Oblate-<br>spheroidal  | Monocolpate, bilaterally symmetrical  | Reticulate                   |

| 37 | Salvia splendens<br>Sellow ex Schult.        | Scarlet sage                       | Lamiaceae     | 10.28±0.72 | 11.04±0.89 | 93.12  | Oblate-<br>spheroidal | Hexacolpate, radially symmetrical    | Reticulate          |
|----|----------------------------------------------|------------------------------------|---------------|------------|------------|--------|-----------------------|--------------------------------------|---------------------|
| 38 | Petersianthus<br>quadrialatus Merr.          | Toog                               | Lecythidaceae | 20.31±0.63 | 19.94±0.13 | 101.85 | Prolate<br>spheroidal | Colpate                              | Smooth              |
| 39 | Barringtonia<br>asiatica (L.)                | Fish poison tree                   | Lecythidaceae | 25.62±1.09 | 25.62±1.09 | 100    | Spheroidal            | Syncolpate, colpate                  | Psilate             |
| 40 | Lilium bulbiferum<br>L.                      | Orange lily, Fire lily, Tiger lily | Liliaceae     | 14.52±3.73 | 15.44±2.66 | 94.04  | Oblate-<br>spheroidal | Monocolpate, bilaterally symmetrical | Reticulate          |
| 41 | Punica granatum<br>L.                        | Pomegranate                        | Lythraceae    | 19.95±1.60 | 21±1.36    | 95     | Oblate<br>spheroidal  | Tricolporate                         | Fossulate, rugulate |
| 42 | Brachychiton<br>acerifolius                  | Flame tree                         | Malvaceae     | 32.5±2.04  | 31.25±1.44 | 104    | Prolate<br>spheroidal | Tricolporate                         | Scabrate, verrucate |
| 43 | Alcea rosea L.                               | Hollyhock                          | Malvaceae     | 26.2±2.49  | 26.2±2.49  | 100    | Oblate-<br>spheroidal | Pantoporate,radially symmetrical     | Echinate            |
| 44 | Azadirachta indica<br>A. Juss.               | Neem                               | Meliaceae     | 34.91±0.14 | 34.83±0.14 | 100.23 | Prolate<br>spheroidal |                                      |                     |
| 45 | Morus alba L.                                | Shehtoot                           | Moraceae      | 46.66±2.88 | 52.5±2.5   | 88.87  | Oblate<br>spheroidal  | Triporate, porate                    | Psilate             |
| 46 | Moringa oleifera<br>Lam.                     | Moringa                            | Moringaceae   | 30.35±2.35 | 29.9±0.22  | 101.5  | Prolate<br>spheroidal |                                      |                     |
| 47 | Callistemon<br>viminalis (Sol.ex<br>Gaertn.) | Bottle brush                       | Myrtaceae     | 19.08±1.58 | 21.08±3.76 | 90.51  | Prolate<br>spheroidal | Tricolporate                         | Psilate             |
| 48 | Syzygium cumini<br>(L.)                      | Jamun                              | Myrtaceae     | 16.91±0.63 | 14.16±1.44 | 119.42 | Sub-prolate           | Tricolporate                         | Psilate             |
| 49 | Bougainvillea<br>spectabilis Willd.          | Bougainvillea                      | Nyctaginaceae | 32.5±2.5   | 30.83±2.88 | 105.41 | Prolate<br>spheroidal | Microechinate                        | Porate              |
| 50 | Jasminum humile<br>L.                        | Peeli chameli                      | Oleaceae      | 47.5±2.88  | 48.12±2.39 | 98.71  | Oblate<br>spheroidal  | Inaperturate                         | Verucate            |

| 51 | Jasminum sambac<br>(L.) Aiton                              | Arabian jasmine                             | Oleaceae         | 9.32±0.39   | 9.36±0.37  | 99.57  | Oblate-<br>spheroidal  | Trizonocolporate, radially symmetrical | Reticulate                  |
|----|------------------------------------------------------------|---------------------------------------------|------------------|-------------|------------|--------|------------------------|----------------------------------------|-----------------------------|
| 52 | Oxalis corniculata<br>L.                                   | Creeping wood<br>sorrel, Sleeping<br>beauty | Oxalidaceae      | 8.36±1.23   | 8.52±1.06  | 98.12  | Oblate-<br>spheroidal  | Tricolpate, radially symmetrical       | Reticulate                  |
| 53 | Oxalis latifolia<br>Kunth                                  | Broadleaf<br>woodsorrel                     | Oxalidaceae      | 6.24±1.08   | 6.24±1.13  | 100    | Prolate-<br>spheroidal | Tricolpate, radially symmetrical       | Reticulate                  |
| 54 | Pinus canariensis<br>L.                                    | Canary pine                                 | Pinaceae         | 76.66±1.44  | 43.33±1.44 | 176.92 | Prolate                |                                        |                             |
| 55 | Limonium<br>sinuatum (L.) Mill.                            | Wavyleaf sea-<br>lavender                   | Plumbaginaceae   | 12.04±0.44  | 12.12±1.41 | 99.34  | Oblate-<br>spheroidal  | Tricolpate, radially symmetrical       | Reticulate                  |
| 56 | Poa annua L.                                               | Annual bluegrass                            | Poaceae          | 6.32±0.64   | 6.24±0.50  | 101.28 | Prolate-<br>spheroidal | Monoporate, bilaterally symmetrical    | Areolate                    |
| 57 | Phlox drummondii<br>Hook.                                  | Annual phlox,<br>Drummond phlox             | Polemoniaceae    | 6.32±0.58   | 6.32±0.58  | 100    | Prolate-<br>spheroidal | Pantoporate, radially<br>symmetrical   | Reticulate                  |
| 58 | Lysimachia<br>maritima (L.)<br>Galasso, Banfi &<br>Soldano | Sea milkwort,<br>Black saltwort             | Primulaceae      | 2.8±0.36    | 3.0±0.33   | 93.33  | Oblate-<br>spheroidal  | Tricolporate, radially symmetrical     | Psilate                     |
| 59 | Putranjiva<br>roxburghii Wall.                             | Patajan                                     | Putranjivaceae   | 29.93±0.125 | 29.37±1.25 | 101.91 | Prolate<br>spheroidal  |                                        |                             |
| 60 | Ixora<br>finlaysoniana<br>Wall.                            | White jungle<br>flame                       | Rubiaceae        | 15.56±0.65  | 15.37±0.43 | 101.23 | Prolate<br>spheroidal  | Tricolporate                           | Reticulate, microreticulate |
| 61 | Rondeletia odorata<br>Jacq.                                | Panama rose                                 | Rubiaceae        | 18.25±1.11  | 19.2±1.71  | 95.05  | Oblate<br>spheroidal   |                                        |                             |
| 62 | Citrus japonica<br>Linn.                                   | Kumquat                                     | Rutaceae         | 24.25±2.99  | 23.56±2.95 | 102.93 | Prolate<br>spheroidal  |                                        |                             |
| 63 | Mazus pumilus<br>(Burm.f.) Steenis                         | Japanese mazus                              | Scrophulariaceae | 6.04±0.99   | 6.00±0.94  | 100.67 | Prolate-<br>spheroidal | Tricolporate, radially symmetrical     | Psilate                     |

# SHAHZADI ET AL., 2024

| 64 | Petunia hybrida<br>E.Vilm. | Garden petunia                          | Solanaceae    | 6.44±0.93  | 6.4±0.66   | 100.63 | Prolate-<br>spheroidal | Tricolporate, radially symmetrical | Striate    |
|----|----------------------------|-----------------------------------------|---------------|------------|------------|--------|------------------------|------------------------------------|------------|
| 65 | Tropaeolum majus<br>L.     | Nasturtium                              | Tropaeolaceae | 6.32±0.94  | 6.48±0.98  | 97.53  | Oblate-<br>spheroidal  | Tricolpate, radially symmetrical   | Reticulate |
| 66 | Lantana camara L.          | Lantana                                 | Verbenaceae   | 30.83±4.38 | 31.25±4.50 | 101.36 | Prolate<br>spheroidal  | Tricolporate                       | Psilate    |
| 67 | Verbena<br>bonariensis L.  | Brazilian vervain,<br>Purpletop vervain | Verbenaceae   | 6.64±1.03  | 6.64±1.03  | 100    | Prolate-<br>spheroidal | Tricolporate, radially symmetrical | Psilate    |

#### DISCUSSION

this In research work. pollen morphology of 67 plant species of herbaceous flora belonging to 40 different families of LUMS has been done by using light microscopy. This study shows that the pollen morphology of herbaceous and woody vegetation exhibits a huge diversity. Pollen shape, size, aperture, tectum, and polar layout are the most common variations. Maximum pollen size is 176.92µm in polar view found in Pinus caraniensis belonging to family Pinaceae and minimum pollen size is 88.87µm in polar view observed in Morus alba belonging to family Moraceae. The most common pollen shapes are prolate-spheroidal and oblatespheroidal. Tricolpate pollen aperture is the most common type.

Pollen characteristics in the current study of 67 plant species are not completely identical to one another, even within the same family, characteristics are firmly comparative, and pollen characters alone are not sufficient as recognizable proof and arrangement of taxa. This evidence leads to the conclusion that pollen morphology provides tremendous help for taxonomic research. For the identification and classification of taxa, pollen morphological characteristics are necessary.

The main element in evolutionary lines is the stability and variation of pollen grains. All of the pollen from the investigated plant species indicate that the majority of these plants are angiosperms. It reveals connections to the study region and other plant species.

#### CONCLUSION

The atmospheric pollen distribution of a location is constantly changing due to numerous biotic and abiotic variables, as in the case of the Asteraceae, Euphorbiaceae, Verbenaceae, and other families in the current study. This has an impact on the development and phonology of the research area. Thus, it is essential to conduct periodic phonological surveys and pollen morphological investigations of various regions. In this current research, pollen morphology of some common herbaceous and woody plant species of Lahore University of Management Sciences, Lahore has been conducted. The focus of the current work is the microscopic morphological assessment of pollen characteristics that help in taxonomy. One of its goals is to record the herbaceous and woody flora of LUMS. The identification of the species in the future will be helpful by this research. Hence, it can be concluded that palynology is one of the most important tools to achieve fruitful taxonomic solutions.

## **FUTURE PERSPECTIVES**

Since the present study based on palynological characterization of herbaceous and woody flora of Lahore University of Management Sciences, Lahore. This study will help in future for the identification of species by using polliniferous material. As pollen morphology plays an important role in taxonomic and phylogenetic history of the vegetation. Palynological investigations information for provide valuable the differentiation and identification of closely

related and problematic taxa. Palynological information has wider application and will study in future as an aid to the identification of related taxa and various major plant groups. Palynological study is very helpful in different fields of sciences including plant physiology, plant breeding, genetics and molecular biology. Thus, palynology can be helpful to find out pollen diversity of the species. Further morphological, palynological and molecular studies will help to solve problems related to the identification of species.

## Acknowledgements

We are highly thankful to Dr. Zeb-un-Nisa, Research Associate at LUMS for providing us help in palynoferious material.

#### **Conflict of interest**

The authors declare no conflict of interest.

#### **Author's contribution statement:**

The authors collectively assert that there are no conflicts of interest and each author has made an equal contribution to the work.

## **Funding statement:**

The department of Botany, GC University Lahore provided financial help to carry out the experimental work.

#### REFERENCES

Abdulrehman, S. S., Z. Selamoglu, and S. E. Shahbaz. 2019. Pollen Morphology of Prunus Subg. Amygdalus (Rosaceae) growingiIn Iraq. me 28 – No. 11/2019 pages 8254-8265 Fresenius

- Environmental Bulletin., 28(11): 8254-8265.
- Bebarta, V. S., S. Ramirez, and S.M. Varney. 2012. Spice: a new "legal" herbal mixture abused by young active duty military personnel. Substance abuse, 33(2):191-194.
- Blackmore, S. and I. K. Ferguson. 1986. Pollen and Spores: Form and Function. Academic Press.
- Chapman, B. R. and E. G. Bolen. 2015. Ecology of North America. John Wiley and Sons, pp 156-162.
- Clapham, A. R., T. G. Tutin and D. M. Moore. 1994. Flora of the British Isles. Cambridge University Press.
- Erdtman, G. 1952. *On pollen and spore terminology*. Almqvist Wiksell, Stockholm., pp 406-409.
- Erdtman, G. 1963. Palynology: Advances in Botanical Research. Academic Press, pp 149-208.
- Faegri, K. and J. Iverson. 1964. Text book of Pollen Analysis. 3rd Edition. Hafner press.
- Frenguelli, G. 2003. Pollen structure and morphology. PDiA., 20(4):200-204.
- Gomez, J. F., B. Talle and Z. A. Wilson. 2015. Anther and pollen development: A conserved developmental pathway. J. Integrative Plant Biol., 57(11): 876-891.
- Halbritter, H., S. Ulrich, F. Grimsson, M. Weber, R. Zetter, M. Hesse and A. Frosch-Radivo. 2018. Palynology: History and Systematic Aspects. Illustrated Pollen Terminol., 3-21.
- Hyde, H. A., and D. A. Williams. 1944. Studies in atmospheric pollen. I. A daily census of pollens at Cardiff, 1942. New Phytol., 43(1): 49-61
- Khan, R., S. Z. Ul-Abidin, M. Ahmad, M. Zafar, J. Liu and H. Amina. 2018. Palyno-morphological characteristics of gymnosperm flora of Pakistan and its taxonomic implications with LM and SEM methods. Microsco. Res. Tech., 81(1): 74-87.

- Mabberley, D. J. 1997. The Plant-book: A Portable Dictionary of the Vascular Plants. Cambridge University Press, pp 858.
- Mbagwu, F. N., E. G. Chime and C. I. N. Unamba. 2008. Palynological studies on five species of Asteraceae. Life Sci., 5(1): 73-76.
- Meo, A. A. and M. A. Khan. 2006. Pollen morphology as an aid to the identification of *Chrysanthemum* species (Compositae-Anthemideae) from Pakistan. Pak J. Bot., 38(3): 73-82.
- Saxena, M. R. 1993. Palynology a treatise. Oxford & I.B.H. Publishing, pp 40-45.
- Van der Ham, R., C. Mennes and B. Joan van Heuven. 2010. Fevilleoideae pollen

- (Cucurbitaceae): A study Striate ornamentation. Grana, 49: 157-169.
- Walker, J.W. and J. A. Doyle. 1976. The bases of angiosperm phylogeny. Annals of the Missouri Botanical Garden (USA), 62(3): 664-723.
- Willis, J. C. 1973. A Dictionary of the Flowering Plants and Ferns. Cambridge University Press, pp 98-107.
- Wodehouse, R. P. 1928. The phylogenetic value of pollen grain characters. Ann. Bot, 42(4):891–934.
- Zafar, M., M. Ahmad and M. A. Khan. 2007. Palynology of family Asteraceae from Flora of Rawalpindi- Pakistan. Int. J. Agric. Biol., 9(1): 156-161.