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Abstract

Allelopathy is a form of ecological competition that takes place rather regularly in natural settings and has a
significant influence on how biocenoses carry out the responsibilities that are essential to their continued
existence. In the last few decades, numerous significant discoveries have been made about the isolation and
identification of plant and microorganism metabolites with allelopathic activity, as well as their function in the
ecosystems of soil. These findings have led to several critical breakthroughs. These findings were uncovered in
connection with the allelopathic activity of the metabolites. As a further consequence of these findings, the
relevance of these metabolites has also been brought to light. In this article, the allelopathic qualities of plants and
microbes, as well as the primary applications and mechanisms of allelochemicals, as well as the stability of
allelochemicals in soil ecosystems, are investigated in depth. In addition, the primary applications and
mechanisms of allelochemicals are discussed. In addition to discussing the consequences of anthropogenic
activity, this article also addresses the one-of-a-kind qualities that allelopathic activity possesses when it is present
in an environment that is experiencing change. These characteristics are only seen when allelopathic activity is
present in an environment where anthropogenic activity is also present. Allelopathic interactions between various
species are essential to the process of biocenosis, which depends largely on these interactions. Allelopathy is
something that must be taken into consideration for the future of research since it can regulate phytopathogens,
which is imaginable. Because of this, allelopathy is something that needs to be taken into consideration.
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INTRODUCTION

Allelopathy is a naturally occurring process
that has been shown to have a major impact on the
operation of biocenoses. It is performed through the
production and release of metabolites that have
allelopathic activity, and it involves a range of
different chemical interactions that take place
between organisms (Chaib et al., 2021). The
interactions that take place between plants are the
most prevalent thing that people mean when they
talk about allelopathy (Kong ef al., 2024); However,
it can also be used to refer to the interactions that
take place between different types of
microorganisms, as well as the interactions that take
place between plants and different types of bacteria
(Cipollini et al., 2012).

Hydrocarbons,  terpenes,  flavonoids,
polyacetylenes, and fatty acids are only a few
examples of the chemical classes represented by
allelopathic compounds. The most prevalent
phytotoxins are quinones and phenolic chemicals
(Latif et al., 2017). Flavonoids provide defense for
plants in several ways. Allelochemicals undergo
microbiological change (Jilani et al., 2008), which
yields new molecules with distinct biological
characteristics (Aslam et al., 2017). Allelopathy is a
resource-based conflict (Nazarov and Shirokov,
2014) and is greatly impacted by factors such as the
structure of the soil, humidity, temperature, the
availability of nutrients, the concentration of
allelochemicals, as well as either plant's resistance
or vulnerability to the effects of microorganisms
(Inderjit et al., 2008; Perry et al., 2007). Because of
this, it is sometimes more difficult to differentiate
between the allelopathic influence and the effects of
other environmental factors. Maintaining soil cover,
increasing soil fertility, and restoring regions that
have been anthropogenically disturbed all strongly
rely on having a solid consideration of the dynamics

of the organic condition of the soil and the biota that
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inhabit it. In the past, the research on allelopathy was
intended to address issues with agrocenoses,
specifically the interaction between weeds and crops
(Tesio and Ferrero, 2010). Herbicides harm both the
environment and people; therefore, this is primarily
related to the quest for alternatives (Patni et al.,
2018).

Even though allelopathy has been actively
studied in recent years, the data that have been
collected are scarce or controversial, which is
particularly true for soil processes (Blanco, 2007).
Because allelopathy has primarily been investigated
in the laboratory and under artificial conditions
(Inderjit, 2002), several writers are dubious about its
veracity (Jose et al., 2006). Because allelopathy is
simultaneously influenced by many biotic and
abiotic aspects in natural biocenoses, research on the
phenomenon takes place in controlled laboratory
settings. This makes it much easier to understand
and analyze the findings (Ehlers, 2011).

Further study is necessary to find solutions
to various issues relating to allelopathy as a natural
occurrence with significant practical and scientific
implications. This chapter discusses the primary
roles of the allelochemicals and the function of
allelopathic relations in the biocenoses, the
distinctive characteristics of allelopathy due to
anthropogenic activities and changing ecological

conditions, and the potential for using allelopathy to

regulate phytopathogens.

PLANTS' ALLELOPATHIC
CHARACTERISTICS
Allelopathy and Its Role in Plant Interactions

One of the major factors in identifying the
kind of plant connection is allopathy. Allelopathic
plants secrete a variety of metabolites, which help to
them

develop a certain environment around

(Kondrat'ev et al., 2014). According to some
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species, it may be harmful, beneficial, or neutral
(Anaya et al., 2013) as shown in Fig. 1.

From a practical standpoint, considerable
emphasis should be given to metabolites that prevent
competitive plant species from reproducing,
growing, or surviving either directly or indirectly
(Hierro and Callaway, 2003). There are numerous
articles that describe this allelopathic action for
plants of various species. On the contrary, when the
same invasive species was investigated in certain
cases, completely different results were discovered
(Blair et al., 2006). These discrepancies may stem
from variations in research methods (Ehlers, 2011).

Root systems have a major role in how
plants in phytocenoses interact (Khaleeq et al.,
2024). Allelopathic plant metabolites have an effect
not only on the growth and imitation of the plants
but also on mycorrhizal activity and the progression
of microbes (Blanco, 2007). Allelopathic
compounds penetrate plants in a variety of complex
and intricate ways. According to Putnam and Tang
(1986), they typically enter acceptor plants through
the root system, where water and nutrients are
carried upward. In some plants, this process is
followed by pathological alterations to the vascular
bundle's xylem. According to Simagina and
Lysyakova (2010), the acceptor plants Salicornia
europaea exhibit intense lignification of conduction
routes because of metabolites from plants with
allelopathic qualities such as Artemisia santonica
and Limonium gmelinii. Changes in membrane
permeability, chloroplast photochemical activity,
mitochondrial division rate, the concentration of
chlorophyll, and the function of the ribosome, or the
general cells’ functioning, are all effects of

metabolites with allelopathic activity at the cellular
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level (Einhellig, 2004). Allelochemicals alter the
function of intracellular enzymes and membrane
proteins, particularly antioxidant enzymes (Li et al.,
2011).

For instance, 2-benzoxazolinone (BOA)
brings oxidative stress in the Phaseolus aureus
(which belongs to the family Leguminosae) that is
conveyed through an escalation in the proline
content, malondialdehyde, and the hydrogen
peroxide, as well as an increase in the antioxidant
enzymes’ activity such as superoxide dismutase,
ascorbate peroxidase, guaiacol peroxida (Batish et
al., 2006). Allelochemicals can therefore have an
impact on biochemical and physiological processes
as well as on cellular, molecular, or ultrastructural
alterations.

Plants' Allelopathic Substances

Only a few of the recognized metabolic products
currently exhibit allelopathic action. In the roots and
rhizosphere of plants, phenolic compounds,
alkaloids, terpenoids, other metabolites, and steroids

having allelopathic activity have been found.

Because they are the most pervasive higher
plant poisons and generate significant allelopathic
tension in phytocenoses, phenolic compounds are
thought to play a special function. According to
Latif et al. (2017), phenolic chemicals are currently

associated with more than 8000 identified metabolic

products. The hydroxycinnamic and
hydroxybenzoic acids, coumarins,
dihydrochalcones, flavonoids, and other

biologically active chemicals of the same category
that accumulate in the soil, assist in hindering the
germination of the seeds as well as the growth of

plants.
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Figure 1: Allelopathic plant interactions

Terpenoids are a broad class of plant
compounds (Table 1). Isoprene blocks make up the
carbon skeleton of these organisms. Semi- and
monoterpenes, respectively, have one or two blocks,
whereas polyterpenes have more than eight.
According to certain scientists, this group of
chemical compounds has a substantial amount of

structural variety, which facilitates the active
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management of environmental connections in
biocenoses (Bardin et al., 2015). Over 24,000
terpenoids have been described thus far. Because
they are the metabolic byproducts of a wide variety
of plants, ranging from trees to herbs, many of them
have the potential to have both inhibiting and
stimulating impacts on the plants and microbes

(Ehlers, 2011).
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Table 1. Allelopathic Plant Substances

Substance

Mode of Action

Reference

Phenolic compounds
1. Cinnamic

acid organic molecules
2. Benzoic
acid
Terpenoids
1. 1,8-Cineol mitosis stages
2. Thymol
Alkaloids DNA structure affects

1. Berberine
2. Papaverine

Cyclic  hydroxamic
acid

1. BOA

2. DIMBOA

Influence on the permeability of membranes, hormonal activity,
photosynthetic activity, respiration, and the production of

Influence on respiration, membrane permeability, and all

protein
permeability, and enzyme activity.

Effect on covalent protein modification and ATPase activity

(Latif ef al., 2017)

(Huang et al., 2023)

synthesis, membrane (Han and Li, 2023)

(Latif et al., 2017)

In allelopathic relationships, heterocyclic
nitrogen-containing chemicals known as alkaloids
play a significant role (Table 1). According to Yang
and Stockigt (2010), more than 20,000 secondary
metabolites have been found and allocated to this
group. Alkaloids play a crucial part in protecting
plants from herbivores, other plants, and microbes,
which accounts for their widespread distribution.
For instance, wild tobacco belonging to the genus
Nicotiana is more likely to create nicotine when
herbivorous animals consume and kill it, and
nicotine has an allelopathic effect on other annual
wildflowers (Quinn et al., 2014). Several members
of the Gramineae family produce cyclic hydroxamic
acid glycosides that have bactericidal, fungicidal,
and phytotoxic effects. Plant enzymes convert the

two chemicals that make up this group's primary

representatives, (2,4-dihydroxy-7-methoxy-1,4-
benzoxazin-3-one) and (2,4-dihydroxy-1,4-
benzoxazin-3-one), into  aglycones  where

allelopathic activity is exhibited (Latif et al., 2017).

Aglycones break down to produce the
compounds B(2-benzoxazolinone) and B(A) (6-
methoxy-2-benzoxazolinone), both of which have
(Table 1).

allelopathic characteristics

Benzoxazolinones protect plants from pests and
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phytopathogens.  Plant  metabolites  having
allelopathic activity may modify, strengthen, or
weaken the functions of soil biota to regulate soil
biota activity and promote plant development.

Allelopathic Substances' Formation: Contributing
Factors
Numerous living and nonliving factors affect the

development of allelopathic chemicals and their
impacts. According to Tang et al. (1995), plants
cultivated in nutrient-poor soil produce more
physiologically active metabolites than those grown
in nitrogen-rich soil. They first proposed this after it
was revealed that plants with moisture and
phosphate shortages demonstrated a great level of
allelopathic activity (Sara et al., 2024).

In the absence of phosphorus, Lupinus
angustifolius roots will produce the flavonoid
genistein (Weisskopf et al., 2006), which serves as
a precursor in the production of the antimicrobial
phytoalexins and phytoanticipins (Zeng et al.,
2008). Discharge of such compounds in the
rhizosphere, which noticeably plays a dynamic
character in phosphorus source to the plants that
confine mobilization of unavailable phosphorus via
microbial degradation of citrate (Sugiyama and
Yazaki, 2012). UV light, and

water  stress,
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temperature are stressors that may activate the
allelopathic features (Reigosa et al., 2002). High or
low temperatures may be conducive to stimulation.
Important characteristics are influenced by
temperature, particularly the activity of enzymes and
the cell membranes' viscosity (Samim et al., 2023).
In the creation of allelopathic chemicals,
soil type is crucial. Soil that is more aerated and with
a granular consistency, as opposed to compact soil,
creates more allelochemicals. Pathogens, plant
pests, parasites, and interactions with other plants
are some examples of biotic stimulating factors
(Rivoal et al., 2011). According to available
research, plants produce chemicals with allelopathic
action more frequently when the environment is
adverse.
Forest Ecosystems Allelopathy
The phenomenon of allelopathy is pervasive in
timberlands and has a significant impact on tree
development and growth (Blanco, 2007; Rasheed,
2024). This is a common occurrence among
numerous tree species native to Australia's northern
and tropical forests, temperate zones, and eucalyptus
groups. (Weidenhamer ef al., 1989) found that soil
qualities and other environmental factors
considerably influenced the intensity and efficiency
with  which

trees formed biologically active

chemicals. Forest management and quality
enhancements benefit greatly from the study of
allelopathy (Blanco, 2007). The occurrence of this
process in the forest ecosystem is currently being
considered in numerous nations due to its scientific
and practical significance. Nevertheless, despite its
prominence and widespread incidence, there is a
chronic shortage of information on allelopathy in
forests. According to several experts, this is due to
difficulty in separating allelopathic effect from
further factors such as the struggle for food
(Kimmins, 2004).

MICROBIAL ALLELOPATHIC ACTIVITIES
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Phytopathogens controlled by microbes

Recent decades have seen a surge in research into
the allelopathic properties of soil microorganisms
(Maksimov et al., 2011) because of the widespread
adoption of allelopathic methods for protecting
plants from pathogens (Aslam et al., 2017). In
plants, microbes act both as mediators and targets of
allelopathy, as shown in Fig. 2.

Phytopathogens can be  controlled
microbiologically as a substitute for chemical plant
fortification (Javaid and Shoaib, 2013). While PPCs
do a good job, pesticides kill off both harmful and
helpful bacteria (Maksimov et al., 2011; Pervaiz et
al., 2024). In addition, most of them accumulate in
food, are highly carcinogenic, and are poorly used
by soil microbiota (Patni et al, 2018).
Microbiological preparations, conversely, achieve
their effects by controlling the population density of
harmful microorganisms, establishing competitive
relationships with native microorganisms, and
inducing system stability in the natural environment.

Numerous studies have demonstrated that
microorganisms of diverse phylogenetic origins can
be effective antagonists of phytopathogens (Podile
and Kishore, 2006; Aleem, 2024). Although
actinomycetes are the primary source of antibiotics
in nature, most investigations on microbial
allelopathy have been conducted on micromycetes
and bacteria (Gerbore et al., 2014). Agrobacterium,
Pseudomonas, Bacillus, and Streptomyces were
used in the production of commercial biological
products based on the fungi Ampelomyces, Candida,

Coniothyrium, and Trichoderma.

Bacterial activity

Plant-growth-promoting rhizobacteria, or PGPRs,
are a common name for rhizobacteria that aid in
plant growth. These are categorized as biopesticides
in the US (Slininger et al., 2003). Plant roots provide

a range of metabolites that provide food for



J. Plantarum., 7(2): 75-91

microbes that coexist with plants in tissues of the
root system in the surrounding soil and on the root

surfaces. Gram-negative bacteria dominate the

rhizosphere, such as P. fluorescens, P. pulida, P.

corrugate, P. aureofaciens, and others. These

microorganisms are also targeted

by
agrobiotechnology. They act as a cornerstone for
organic plant defense against phytopathogens and as
for and

biostimulators plant

production (Podile and Kishore, 2006). When

development

treated to roots, seeds, and seedlings, pseudomonads
PGPR’s several strains can considerably lower the
occurrence of plant disease and enhance plant
production (Saeed et al., 2021).

Rhizobacteria, which inhabit the roots of
plants, can be beneficial, detrimental, or neutral

depending on how they affect the plant (Dobbelaere

FARZAND ET AL., 2025

et al., 2003). Production of the hydrolytic enzymes
(lipase, chitinase, gluconase, and protease) that can
break down other bacterial or fungal cells, the
antagonism for the food on the surface of plant roots
with the involvement of enzyme
aminocyclopropane-1-carboxylate-deaminase
deaminase are all examples of microbial interactions
(Kanwal et al., 2024).

Antibiotics, siderophores, and bacteriocins
are the three types of physiologically active
metabolites that have proven to be the most effective
in  inhibiting the

or completely

stopping
phytopathogen's growth (Beneduzi e al., 2012). The
fact that iron ions' poor bioavailability is a restrictive
factor for the growth of phytopathogenic microbes
explains why siderophores (iron complexions) are of

interest to researchers.
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Figure 2: Microorganisms as mediators and targets of allelopathy (Cipollini ez al., 2012)

81



J. Plantarum., 7(2): 75-91

FARZAND ET AL., 2025

Table 2. Bacterial activity related to sensitive plants

Bacteria Substances Sensitive Plants Concentratio | Effect | Referenc
n *(%) |e
Pseudomonas sp. HCN Potato Solanum 0.13mg L! 40 (Helmi et
tuberosum al.,2024)
Bradyrhizobium Rhizobiotoxin, | Not determined Not NT (Torres et
Japonicum indole-3-acetic determined al.,2021)
acid
Thermoactinomycete sp | 5'- Algae Lemna minor 100 mg L' NT (Torres et
Deoxyguanosin al.,2021)
e
Streptomyces Geldamicin, Lepidium sativum 1-2mg L' 50 (Diaz-
hygroscopicus nigericin Cruz et
al., 2022)
Streptomyces Hydantocidin Weed Digitara 500 mg L! 100 (Sin  and
hygroscopicus ischaemum, field Kadioglu,
mustard Sinapis 2021)
arvensis, and others
Streptomyces sp. Blasticidin, China bean Vigna | 100 mg m™ 64-98 | (Li et al,
5- sinensis, Winter 2013)
hydroxylmethyl | weed Stellaria
-blasticidin media and
veronica Veronica
persica
Streptomyces sp. Phthoxazolins Radish Raphanus 63-250 mg per | 40-90 | (Li et al.,
B, C,and D sativus and test tube 2013)
sorghum Sorghum
bicolor
Streptomyces Herboxidien Maize Zea mays, | 6.9 mgm? 100 (Cinkocki
chromofuscus colza Brassica napus, et al.,
and 2021)
buckwheat Fagopyru
m sagittatum
*Effect% % is growth inhibition, and NT stands for not determined.
Table 3: Spectrum of biological effects of the Fungal toxins
Mycotoxins Producers Biological effect References
Rubratoxin Penicillium rubrum, P. Fungicidal, phytotoxic, and Masi et al., 2018
Sfuniculosum Z00toXiC
Sterigmatocystin ~ Aspergillus ustus, A. Bactericidal, phytotoxic, and Mabhata et al., 2022
nidulans, A. versicolor Z00toXicC
Patulin P. daleae, P. expansum A. Fungicidal, bactericidal, Tannous et al.,
clavatus phytotoxic, and zootoxic 2020
Citrinin P. citrinum, A. pseudoterreus Fungicidal, bactericidal, Kamle et al., 2022
phytotoxic, and zootoxic
Ochratoxin A. ochraceus, A. clavatus, P. Fungicidal, bactericidal, Svistova et al.,
veridicatum phytotoxic, and zootoxic 2004
Fumigatin A. fumigatus, A. flavus Fungicidal, phytotoxic, and Rudramurthy et al.,
amoebicidal 2019
| Trichodermin Trichoderma spp. Fungicidal and zootoxic Yao et al., 2023 |

Fusarium acid

Fusarium solani, F. oxysporum

phytotoxic

Fungicidal, bactericidal, and

Xuetal., 2023
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Antifungal antibiotics play a significant
role in antagonistic relationships, according to many
writers (Haas and Keel, 2003; Akhter et al., 2017).
The most widely used method of controlling
phytopathogens is the synthesis of one or more
antibiotics (Glick et al., 2007; Abbas et al., 2021a).
Like geldanamycin, nigericin, and hydantocidin,
which Streptomyces hygroscopicus produces and is
an active producer of three anti-phytopathogen
antibiotics.  Phloroglucin  byproducts of the
phenazine, pyrrolnitrin, and pyoluteori generated
through pseudomonads, surfactin, iturin A,
zwittermicin A, through the members of genus
Bacillus, and agrosin 84 and other antibiotics
manufactured via agrobacteria, are among the
antibiotics (Ulloa-Ogaz et al., 2015; Arshad ef al.,
2024b). Every antibiotic has a unique mechanism
that determines how it affects cells. For instance, the
functioning of ribosomes can be inhibited by certain
antibiotics, while other antibiotics can regulate the
cell membrane or other cellular components (Reid et
al., 2002).

According to Dilantha et al. (2005),
microbial antibiotics typically have antibacterial,
antiviral, antihelmintic, insecticidal, and antioxidant
properties that support plant growth. With respect to
higher plants, several nonpathogenic bacteria are
allelopathically active (Table 2). To date, only a
small fraction of the numerous bacterial
allelochemicals discovered have proven effective as
herbicides. To be more precise, they include
phosphinotricin, which is a result of the metabolism
of S. viridochromogenes, and bialaphos, which is the
byproduct of the S. hygroscopicus metabolism
(Schwartz et al., 2004). This is because most
provisions in the field have much lesser allelopathic
activity than they do in lab settings (Rafeeq et al.,
2020).

Fungal activity
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The most crucial element of the soil
microbial community is fungi. According to
Zvyagintsev (1999), their biomass reaches 50% of
all soil microbial biomass. Fungi produce an
extensive range of biologically active compounds
during  metabolism,  comprising  enzymes,
antibiotics, and different toxins (Shaheen et al.,
2024).

The toxins produced by fungi that have
bactericidal and fungicidal properties are given
special consideration. Fungal toxins are viewed as
antibiotics from a biological perspective (Egorov,
2004). Representatives of a variety of systematic
groups, such as imperfect fungi, zygomycetes,
ascomycetes, entomopathogenic fungi, oomycetes
etc., might create them.

Vegetation, mammals, bacteria, and fungi
are just a few of the creatures that can be impacted
by fungus toxins (Battilani et al., 2016; Arshad et
al., 2021). Several mycotoxins are poisonous to
humans, plants, and microbes. Toxins produced by
deuteromycetes belonging to the genera Penicillium,
Aspergillus, and Fusarium typically have a wide
range of biological impacts; several of them are
listed below in Table 3.

According to Daguerre et al. (2014), cyclic
terpenoids, polypeptides, and polyketides make up
most fungal poisons. Alternariol (Alternaria
tenuissima), zearalenone (Fusarium spp.), citrinin
(Penicillium spp.), patulin, aflatoxin (4spergillus
fumigatus), and other powerful mycotoxins with
both zootoxic and phytotoxic qualities are examples
of polyketides (Berestetskiy, 2008; Abbas et al.,
2021b).

Toxins have diverse effects through
various pathways. Mycotoxins' damaging effects
primarily target the proteins and enzymes that make
up cell membranes, including their structural and

transport components (Duke and Dayan, 2011).
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While certain toxins raise plant respiration rate and
activity of oxidative enzymes, others block the
conductive system, prevent respiration and
photosynthesis, and disturb water balance in plants.
Prokaryotes' ability to respire and phosphorylate can
be inhibited by fungal toxins. In the soil microbial
community and plant systems, toxin-producing
micromycetes have extra benefits and outcompete
their competitors (Davidova et al., 2024).

The stability of fungi's phytotoxins varies
greatly (Vanhoutte et al., 2016). Trichoderma
harzianum, Aspergillus ustus, and Penicillium
daleae phytotoxins retain their action for a longer
period, whereas T. flavus and especially 4. clavatus
phytotoxins retain their high level of activity for a
very long period (Svistova et al., 2003). Rhizopus
stolonifer phytotoxins, for instance, are quickly
inactivated in soil.

ENZYMATIC FUNCTIONS

Microorganisms' lytic enzymes provide a crucial
allelopathic purpose. The primary lytic enzymes of
fungi are chitinase and B-glucanase since the key
components of their cell walls include chitin and (-
glucan. Lytic enzymes are required for
mycoparasitism together with proteases (Daguerre
et al., 2014; Arshad et al., 2024a). Mycoparasitism,
commonly referred to as hyperparasitism, is the
parasitic use of another fungus's resources. The
production of the enzymes chitinase, protease, and
glucanase allows parasitic fungi to dissolute the cell
wall and enter phytopathogenic fungal hyphae.

Such as the enzyme-1,3-glucanase
produced through Clonostachys rosea, and further
fungi break down cell walls of the pathogens that
cause fusarium rot, Fusarium oxysporum, and
Pythium aphanidermatum root rot (Chatterton and
Punja, 2009). Because it breaks down the cell wall
and hinders the formation of Botrytis cinerea spores,
the chitinase produced by Serratia plymuthica is

responsible for the spread of a wide variety of plant
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diseases. The synergistic effect is significant when
both chitinolytic and glucanolytic enzymes are
acting on the same substrate at the same time,
particularly when both endochitinases and -1,3-
glucanases are engaged at the same time (Steyaert e?
al., 2004).

In addition to destroying the host
organism's cell walls, fungi-derived proteases also
work to inactivate the pathogens' infection-causing
enzymes (Daguerre et al., 2014). Other enzymes that
are crucial for controlling mycoparasitism can be
degraded because of high protease production
levels. In the parasite-pathogen system, the products
of the breakdown of the cell wall that occur during
mycoparasitism  function as lytic enzyme
stimulators. It is important to highlight that, in
addition to higher plants, bacteria and fungi can
produce these enzymes too (Kolombet, 2007).

Allelopathic interfaces, antibiosis,
mycoparasitism, and their mutual influence may be
the basis for antagonist microorganisms' effects on
phytopathogenic fungi. This reflects the complex
microbial interactions in soil. When Trichoderma
harzianum and Botritis cinerea compete against one
another, for example, there is a synergism between
1,3-glucanases and peptide antibiotics (peptaibols)
and as well as between proteases and the chitinases
involved in cell-wall disintegration. This synergism
occurs even though both organisms are antagonistic
to one another. Synergistic effect and enhanced
action are

fungicidal produced by peptide

antibiotics, which prevent membrane-bound

synthetase to host’s -1,3 -1,3-glucan and
resynthesize the -glucan of the cell wall (Sharma et
al., 2022).

Effects of conservation factors on microbial
allelopathic activity

The number of soil-dwelling microbes has a
substantial influence on the allelopathic action of

microbes, in a manner that is analogous to how
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plants interact with one another. The amount of
biologically dynamic metabolites in the soil and,
consequently, the quantity of biologically active
microbes, govern how higher plants are affected
(Nadarajah and Abdul Rahman, 2021). When
phytopathogens and their antagonists interact, soil
type, temperature, acidity, and plant variety all
matter (Kolombet, 2007; Tahir ef al., 2024).

Allelopathic action may also be escalated
because of the anthropogenic impacts, such as the
contamination of soil by pesticides, oil products, and
heavy metals (Polyak et al., 2017). According to
Svistova et al. (2004), polluted ecosystems are
categorized by a considerable buildup of fungus
with a broad spectrum of antibiotic, fungicidal, and
phytotoxic activity. The enhanced role of the
metabolic regulation of the structure of the soil
microbial community is responsible for this
phenomenon.
Transformation of allelochemicals
The microbial community in the soil actively
contributes to the degradation of materials, which
has a substantial influence on the allelopathic
interrelations in the soil. In soil, there are bacteria
and fungi, and other microorganisms that degrade
allelopathically active  chemicals. Lower
allelopathic activity is typically the outcome of the
conversion of physiologically active chemicals into
less harmful molecules (or their total consumption).
However, the reverse result is also conceivable
(Cipollini et al., 2012; Arshad et al., 2024a).

By converting allelopathic chemicals into
more harmful byproducts (Inderjit, 2005),
microorganisms can increase the effectiveness of
these substances. Like, the Acinetobacter
calcoaceticus can convert 2-benzoxazolinone into
the more hazardous plant 2,2-oxo-1,1'-azobenzene
and its methoxy byproducts (Macias et al., 2008).
Simultaneously, soil phytotoxicity declines because

of microbes using physiologically active phenolic
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chemicals (Jilani ef al., 2008). The concentration of

8-hydroxyquinoline and catechin, which are
excreted by roots of Centaurea maculosa and C.
diffusa, is decreased by soil microbes (Inderjit ef al.,
2008; Perry et al., 2007). According to research on
the antibacterial and antifungal properties of
Lamiaceae plants (Vokou et al., 2002), some
bacteria break down the monoterpenes that plants
make and utilize them for their metabolism
(Kalemba and Kunicka, 2003; Latif et al., 2017).

Pathogenic poisons can be broken down by
some bacteria (Vanhoutte et al., 2016; McCormick,
2013). Trichoderma fungus breaks down the poisons
that induce wood necrosis in vine infections such as
eutypine, 4-hydroxybenzaldehyde, and D-3-
phenylacetic acid. This is a trait that is unique to that
species (Kolumbet, 2007; Aslam et al., 2017). Like,
strain 7. album Preuss breaks down eutypine to
produce harmless alcohol eutypinol. Eutypine and 4-
hydroxybenzaldehyde are two toxins that are
capable of being broken down by a different strain
of Trichoderma, and the strain 7. atroviride can
break down all three toxins.

These and numerous other facts
demonstrate the significant and varied functions of
soil microorganisms, which undoubtedly explain
concentration in studies on their allelopathic activity
(Blanco, 2007; Gray and Smith, 2005; Beneduzi et
al., 2012). Plant diseases can be managed using
microorganisms' capacity to break down the poisons
produced by phytopathogens.

CONCLUSION

Allelopathy is a normal development in the
ecosystem of soil. Recent research has yielded
important  information on the definition,
identification, and function of plant metabolites and
microorganisms with allelopathic activities in
natural biocenoses. These studies' primary issues
stem from the outcome of numerous biotic and

abiotic environmental elements on allelopathic
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action, which causes some fragmentation and
inconsistency in the findings. It is important to
highlight and

how herbicides, nematocides,

fungicides affect the allelopathic interactions

between plants and microbes. They generate
microbial imbalances in the soil and alter the
physicochemical properties of the soil. This
establishes a level of interest in using allelopathy in
a practical setting to lessen the use of agrochemicals
on the soil.

An interesting area for more research could
be the application of allelopathy to boost crop
productivity, develop resistant crops, and manage
weeds. Crops including maize, barley, wheat, peas,
oats, tomatoes, soybeans, and others have already
seen some advancement in agricultural farming. The
fungi and bacteria that live in soil play a major role
in finding solutions to these issues. The most
significant areas for future study are (i)
categorization of allelochemical characteristics and
identification of the mechanisms underlying the
effects at physiological and molecular levels (ii) rise
in allelopathic action of the crops and (iii)
investigation of the impact of natural and the
anthropogenic factors on the study of interactions in
complex biological systems may benefit greatly
from modern molecular research techniques,
particularly metabolome analysis.

Findings will help us better understand
how microbes and plants interact and what functions
they play in host-parasite and microbial-plant
interactions in the natural world. There is a need for
extensive research in this field by experts from
various countries, as evidenced by the challenges in
researching allelopathy generally and finding

solutions to its specific concerns.
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